
Beta prior from expert quantiles (robust version)
expert_beta_prior.RdBeta prior from expert quantiles (robust version)
Usage
expert_beta_prior(
q,
p = c(0.1, 0.9),
start = NULL,
method = "BFGS",
maxit = 2000,
tol = 1e-10
)Arguments
- q
Numeric vector of length 2: target quantiles in (0, 1).
- p
Numeric vector of length 2: cumulative probabilities for q.
- start
Optional starting values for log(shape1), log(shape2).
- method
Optimisation method passed to optim().
- maxit
Maximum iterations for optim().
- tol
Tolerance on squared error between target and achieved quantiles below which we don't complain even if optim() reports non-convergence.
Examples
# 10% and 90% quantiles at 2% and 8%: e.g., piano ownership fraction
expert_beta_prior(q = c(0.02, 0.08), p = c(0.1, 0.9))
#> fermi prior
#> Distribution: beta
#> Source : expert
#> Parameters :
#> $shape1
#> [1] 3.623535
#>
#> $shape2
#> [1] 72.7708
#>
# Asymmetric beliefs: 25% chance below 3%, 75% chance below 10%
expert_beta_prior(q = c(0.03, 0.10), p = c(0.25, 0.75))
#> fermi prior
#> Distribution: beta
#> Source : expert
#> Parameters :
#> $shape1
#> [1] 1.458965
#>
#> $shape2
#> [1] 18.76397
#>